New Strategies for Cardiovascular Risk reduction in Diabetes

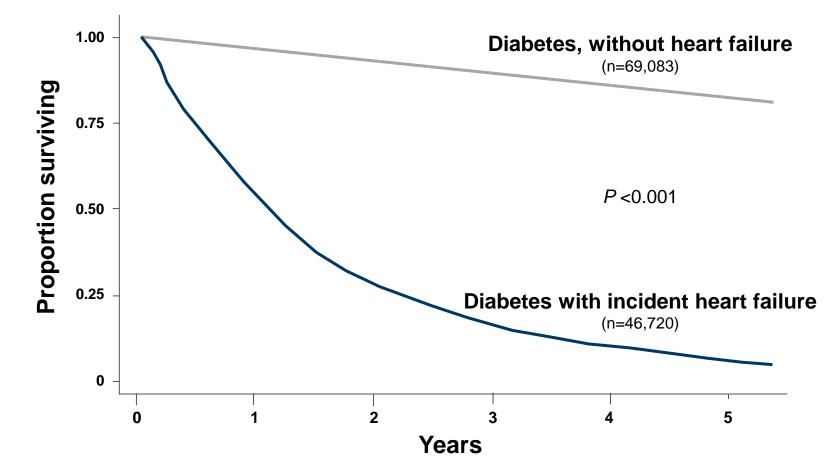
Dr. Godwin LEUNG Tat Chi

MB ChB(HK), MRCP (UK), FHKCP, FHKAM (Medicine) FRCP (Glasg), FACC Specialist in Cardiology

HF was the one of the first manifestation of T2D-related CV disease

16.2% 14.1% 11.5% 10.3% 4.2% PAD HF* NFMI CVA CV death

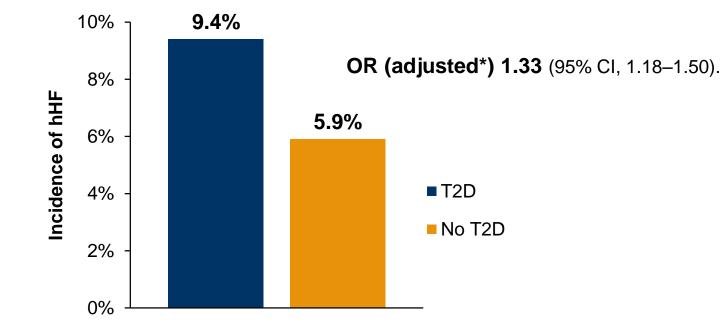
Cohort study of patients (n=1.9 million) with T2D and incidence of CV disease


*Heart failure post MI was not included in this definition of HF

- In this large cohort, PAD and HF were the two most common first presentations of T2D-related CV disease
- Yet, myocardial infarction and stroke continue to be chosen as primary outcomes of major type 2 diabetes trials, as part of the MACE endpoint
- This suggests that future studies should assess CV events that occur earlier in patients with T2D such as HF and PAD

CV, cardiovascular; CVA, cerebrovascular accident; HF, heart failure; NFMI, nonfatal myocardial infarction; PAD, peripheral arterial disease; T2D, type 2 diabetes. Shah AD, et al. *Lancet Diabetes Endocrinol.* 2015;3:105-113, Appendix.

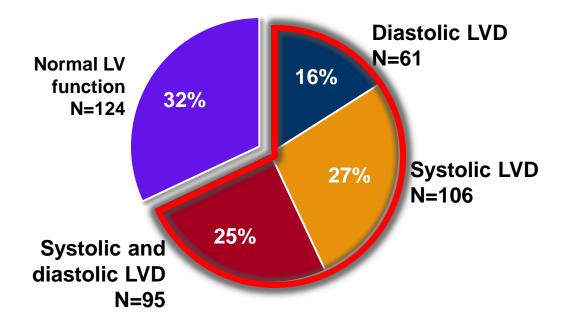
The presence of HF in patients with diabetes is associated with an increased risk of death


- 115,803 adults 65 years and older in fee-for-service Medicare without a prior HF claim were followed for 5 years
- Incident HF was determined using DRG codes
- Survival was significantly lower in those who developed HF compared with those without HF

HF, heart failure; DRG, diagnosis related group Bertoni AG, et al. *Diabetes Care.* 2004;27:699–703.

Type 2 diabetes is a potent, independent risk factor for heart failure

Four year follow up of a cohort with and without T2D (n=45,227) and either established CVD or CV risk factors



Diabetes mellitus was associated with a 33% greater risk of hospitalization for heart failure

hHF, hospitalization for heart failure Cavender *Circulation*. 2015;132:923-931. * sex, age, geographic region, cardiovascular risk factors; ischemic event, renal dysfunction, known vascular disease, congestive heart failure, atrial fibrillation, and medications (statins, aspirin, blood pressure treatment, antihyperglycemic agent).

Left ventricular dysfunction is an early complication of T2 diabetes

68% of patients with T2D had evidence of LV dysfunction 5 years after T2D diagnosis

This suggests the earliest defect in the diabetic heart is diastolic dysfunction

Patients had no evidence of inducible ischemia by stress testing at baseline

LV, left ventricular; LVD, LV dysfunction Faden Diabetes and Clinical Research 2013; Seferović PM, Paulus WJ. *Eur Heart J.* 2015;36:1718-27, 1727a-1727c

'Older' glucose-lowering agents have not definitively shown positive effects on major CV events ...

Trial	Outcome	HR (95% CI)
ACE (N=6522) ¹ Acarbose versus placebo + CV prevention therapy	5P-MACE: CV death, NF-MI, NF-stroke, hUA, hHF	0.98 (0.86, 1.11)
TOSCA.IT (N=3,028) ² PIO versus SU as add-on to MET	All-cause death, NF-MI, silent MI, NF-stroke, urgent coronary – revascularization	0.96 (0.74, 1.26)
ADVANCE (N=11,140) ³ HbA _{1c} ≤6.5% versus HbA _{1c} >6.5% (gliclazide + any other agent)	3P-MACE: CV death, NF-MI, NF-stroke	0.94 (0.84, 1.06)
ACCORD (N=10,251) ⁴ HbA _{1c} <6.0% versus HbA _{1c} 7.0–7.9% (MET, SU, TZD, insulin)	3P-MACE: CV death, NF-MI, NF-stroke	0.90 (0.78, 1.04)
VADT (N=1791) ⁵ HbA _{1c} –1.5% versus the standard group (MET or GLIM, ROSI, insulin)	7P-MACE: CV death, MI, stroke, HF, surgery for vascular disease, inoperable CHD, amputation for ischemic gangrene	0.88 (0.74, 1.05)
DEVOTE (N=7367) ⁶ IGlar versus IDeg	3P-MACE: CV death, NF-MI, NF-stroke	0.91 (0.78, 1.06)
	0.5	1 1.5

CI, confidence interval; CV, cardiovascular; GLIM, glimepiride; HR, hazard ratio; MACE, major adverse cardiovascular event; hHF, hospitalization for heart failure; HF, heart failure; hUA, hospitalization for unstable angina; MET, metformin; NF, non-fatal; PIO, pioglitazone; ROSI, rosiglitazone; SU, sulfonylurea; TZD, thiazolidinedione

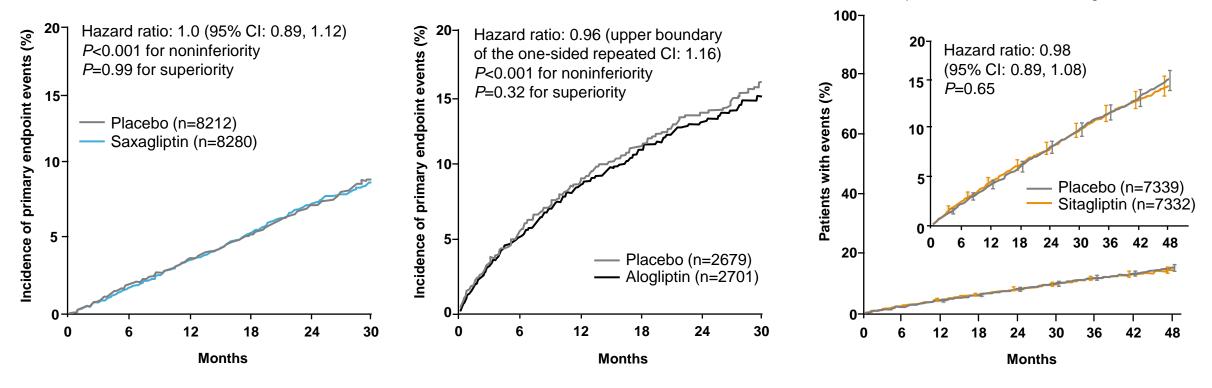
1. Holman RR, et al. Lancet Diabetes Endocrinol 2017; doi: 10.1016/S2213-8587(17)30318-2; 2. Vaccaro O, et al. Lancet Diabetes Endocrinol 2017;5:887-897;

3. ADVANCE Collaborative Group. N Engl J Med 2008;358:2560–2572; 4. The ACCORD Study Group. N Engl J Med 2008;358:2545–2559;

5. Duckworth W, et al. N Engl J Med 2009;360:129–139; 6. Marso SP, et al. N Engl J Med 2017;377:723–732

... while DPP-4 inhibitors were largely CV neutral

Saxagliptin (SAVOR trial)¹

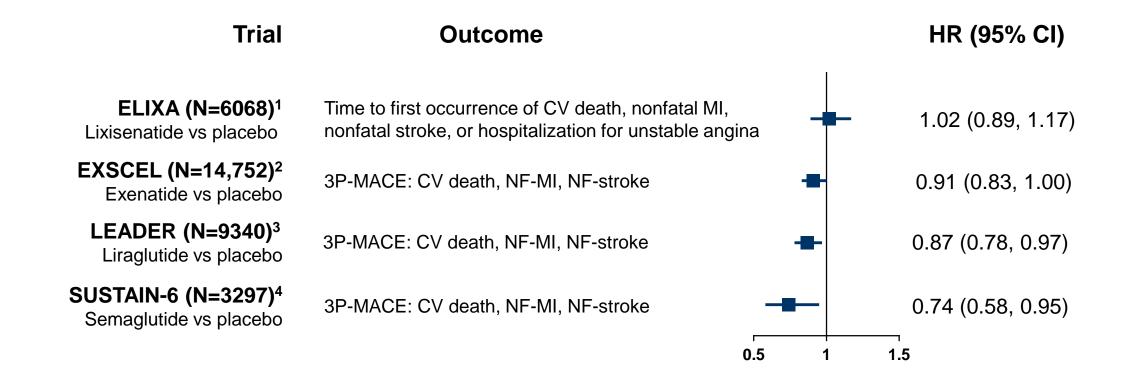

Primary endpoint: Composite of CV death, myocardial infarction, or ischemic stroke

Alogliptin (EXAMINE trial)²

Primary endpoint: Composite of CV death, nonfatal myocardial infarction, or nonfatal stroke

Sitagliptin (TECOS trial)³

Primary endpoint: Composite of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina



CI, confidence interval; CV, cardiovascular; CVOT, cardiovascular outcomes trial; DPP-4, dipeptidyl peptidase-4

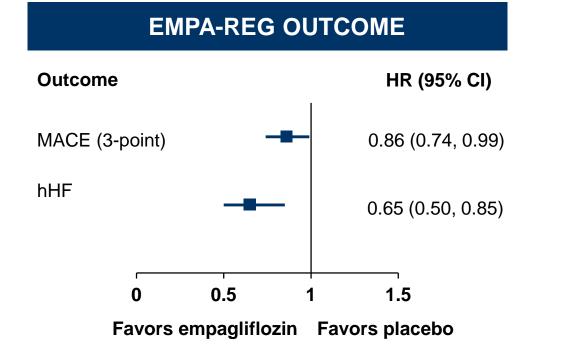
1. Adapted from Scirica B, et al. N Engl J Med 2013;369:1317–1326; 2. Adapted from White W, et al. N Engl J Med 2013;369:1327–1335;

3. Adapted from Green JB, et al. N Engl J Med 2015;373:232-242

CVOTs with GLP-1 RAs in patients with type 2 diabetes demonstrated heterogeneous results

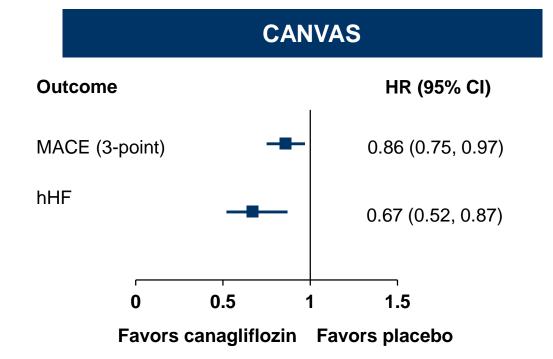
CI, confidence interval; CV, cardiovascular; CVOT, cardiovascular outcomes trial; GLP-1 RA, glucagon-like peptide-1 receptor agonist; HR, hazard ratio; MI, myocardial infarction; NF, nonfatal; 3P-MACE. 3 point major adverse cardiac event 1. Pfeffer MA, et al. *N Engl J Med* 2015;373:2247–2257; 2. Holman RR, et al. N Engl J Med 2017;377:1228–1239; 3. Marso SP, et al. *N Engl J Med* 2016;375:311–322; 4. Marso SP, et al. *N Engl J Med* 2016;375:1834–1844

The impact of GLDs on heart failure has also been heterogeneous and may depend on the class


Class	Study	Impact on HF	
Insulin	Review of diabetes registry from Kaiser Permanente Northwest Registry (n=8063) ¹	1	2 fold increase*
SU (2 nd generation)	Analysis of UK General Practice Research Database (n=91,521) ²	1	HR 1.18 – 1.30 (p=0.01 and p< 0.001)**
TZD	Meta-analysis of patients with prediabetes and diabetes (n=20,191) ³	1	RR 1.72 [1.21-2.42] (p=0.002)
DPP4	Meta-analysis of RCT with DPP4s ⁴	1	OR 1.19 [1.03-1.37] (p=0.015)
GLP-1	Meta-analysis of four CV outcome studies with GLP-1 receptor antagonists ⁵	\leftrightarrow	HR 0.93 [0.83-1.04] (p=0.20)

GLD, glucose lowering drugs; HR, hazard ratio; RR relative risk; RCT randomized clinical trials; HF, heart failure; SU, sulfonylurea; TZD, thiazolidinedione *when insulin was added; ** compared to metformin monotherapy

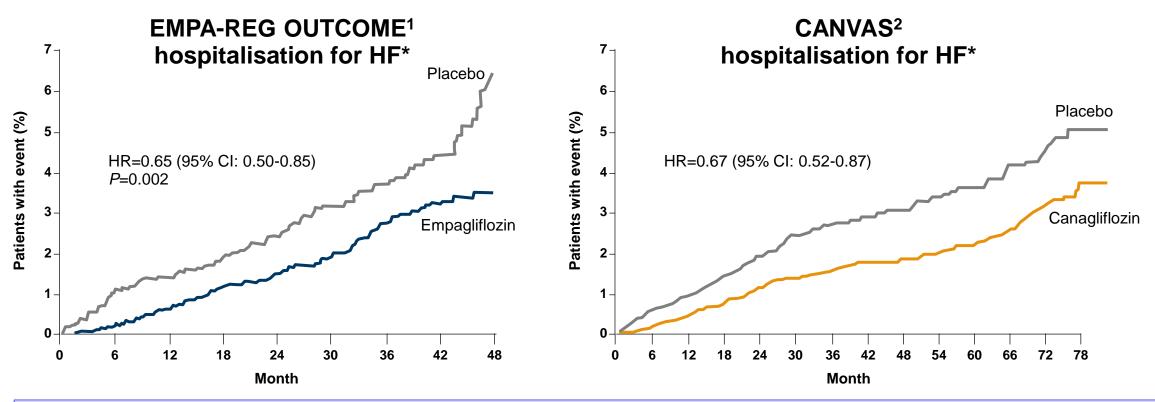
1. Nichols Diabetes Metab Res Rev. 2005;21:51-57; 2.Tzoulaki et al. BMJ2009;339:b4731; 3. Lago et al. Lancet 2007; 370:1129-36; 4. Monami et al. Nutr Meta Cardiovasc Dis 2014;24:689-697; 5. Bethel et al, Lancet Diabetes Endocrinology 2018;6:105-13


CV outcomes data for SGLT2 inhibitors are building

Two SGLT2 studies demonstrate a reduction in both MACE and heart failure endpoints

Demonstrated a significant reduction in CV events in patients receiving empagliflozin

Established CVD: 99%

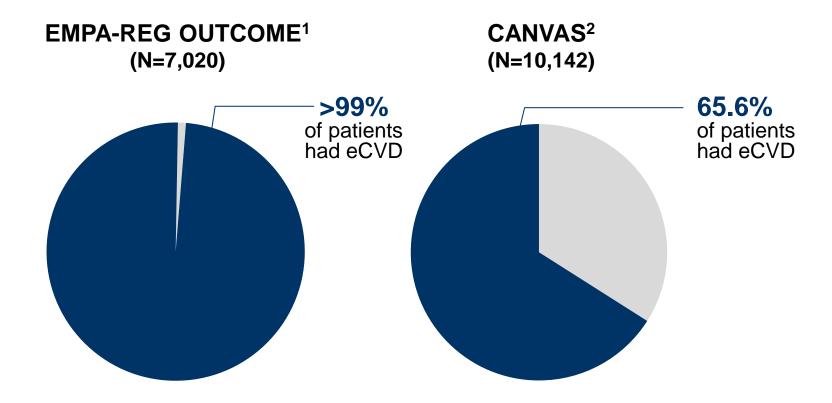

Demonstrated a significant reduction in CV events in patients receiving canagliflozin

Established CVD: 66%

MACE, major adverse cardiovascular event (CV death, nonfatal MI and nonfatal stroke); MI, myocardial infarction; hHF hospitalization for heart failure.

Zinman B, et al. *N Engl J Med* 2015;373:2117–2128; Neal B, et al. *N Engl J Med* 2017 377:644-57

Hypothesis about HF prevention have emerged from SGLT2i trials


These hypothesis generating exploratory analyses* will need to be confirmed in future trials

*hHF is an exploratory end point in both studies. In the EMPA-REG OUTCOME protocol it was considered an exploratory end point. In CANVAS, after the MACE end point, the hierarchical testing started with all-cause mortality. This did not meet statistical significance thus no additional testing was done. Therefore the HF end point is considered exploratory.

CI, confidence interval; CV, cardiovascular; HF, heart failure; hHF, hospitalisation for heart failure; HR, hazard ratio; MACE, major adverse cardiovascular events; SGLT2, sodium-glucose cotransporter-2; T2D, type 2 diabetes. **1.** Zinman B, et al. *N Engl J Med.* 2015;373:2117–2128. **2.** Neal B, et al. *N Engl J Med.* 2017;377:644-657.

While EMPA-REG and CANVAS suggest CV risk can be reduced, these results were seen in T2D patients who predominantly had established CV disease

>99% of T2D patients in the EMPA-REG OUTCOME trial and 65.6% of the T2D patients in the CANVAS trials already had established CV disease i.e. had a previous CV event (MI, stroke) or documented atherosclerosis (coronary artery stenosis, peripheral arterial stenosis)^{1,2}

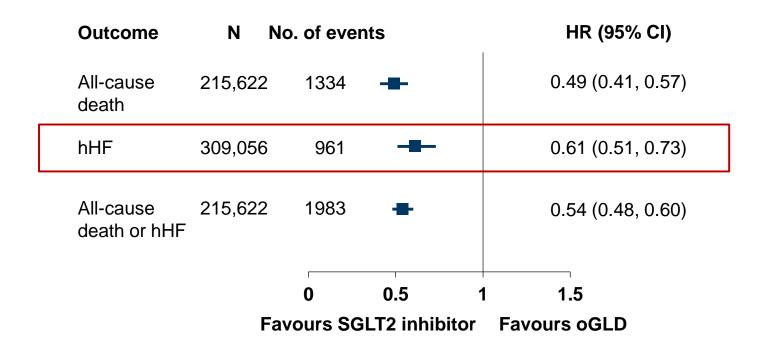
CV, cardiovascular; eCVD, established CV disease; MI, myocardial infarction; SGLT2, sodium glucose co-transporter 2; T2D, type 2 diabetes. 1. Zinman B, et al. N Engl J Med 2015;373:2117–2128; 2. Neal B, et al. N Engl J Med 2017;377:644–657

The CVD-REAL Study

Lower Rates of Hospitalization for Heart Failure and All-Cause Death in New Users of SGLT-2 Inhibitors versus Other Glucose Lowering Drugs: The CVD-REAL Study

> Real World Data from 6 Countries (US, UK, Germany, Sweden, Denmark, Norway)
> > 300,000 patients

CONTRIBUTION OF SGLT-2 INHIBITORS TO ALL-CAUSE DEATH AND HHF IN CVD REAL



Toulis et al, JCEM, Feb 2017

US, Norway, Sweden, Denmark, UK, Germany

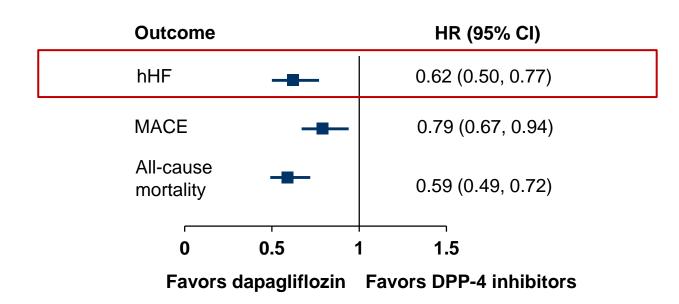
In CVD-REAL, a real-world study, SGLT2 inhibitors were associated with reductions in CV outcomes as well as hHF compared to oGLDs

All-cause death and hHF for SGLT2 inhibitors vs oGLDs¹

13% of patients had established CVD*

 Compared to oGLDs, SGLT2 inhibitors were associated with a 39% reduction in hHF

*Previous event of myocardial infarction, stroke, unstable angina, heart failure or atrial fibrillation.


CI, confidence interval; CVD, cardiovascular disease; hHF, hospitalisation for heart failure; HR, hazard ratio; oGLD, other glucose-lowering drug.

SGLT2, sodium-glucose cotransporter-2.

Kosiborod M, et al. Circulation. 2017;136:249–259.

Dapagliflozin versus DPP-4 inhibitors was associated with reductions in CV endpoints and death in a population with a broad cardiovascular risk profile

MACE and all-cause mortality for dapagliflozin vs DPP-4 inhibitors²

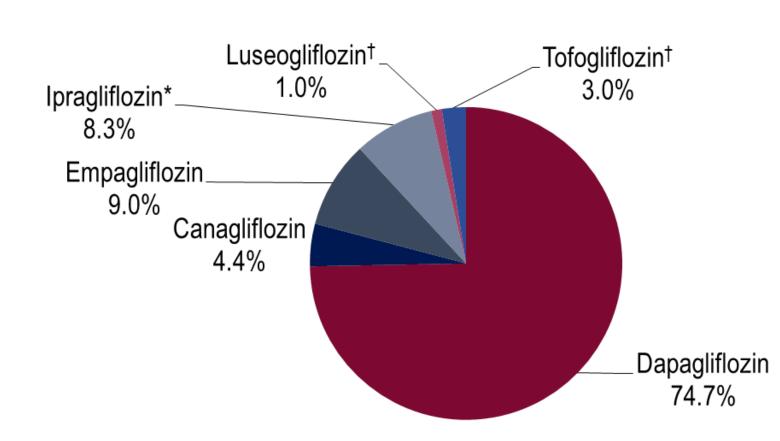
23% of patients had established CVD

• Compared to DPP4i, Dapagliflozin was associated with a 38% reduction in hHF

CI, confidence interval; CV, cardiovascular; CVD, cardiovascular disease; DPP-4, dipeptidyl peptidase-4; hHF, hospitalization for heart failure; HR, hazard ratio; MACE, major adverse cardiac event; SGLT2, sodium–glucose co-transporter 2; oGLD, other glucose-lowering drug. 1. Persson F, et al. *Diabetes Obes Metab* 2018;20:344-351

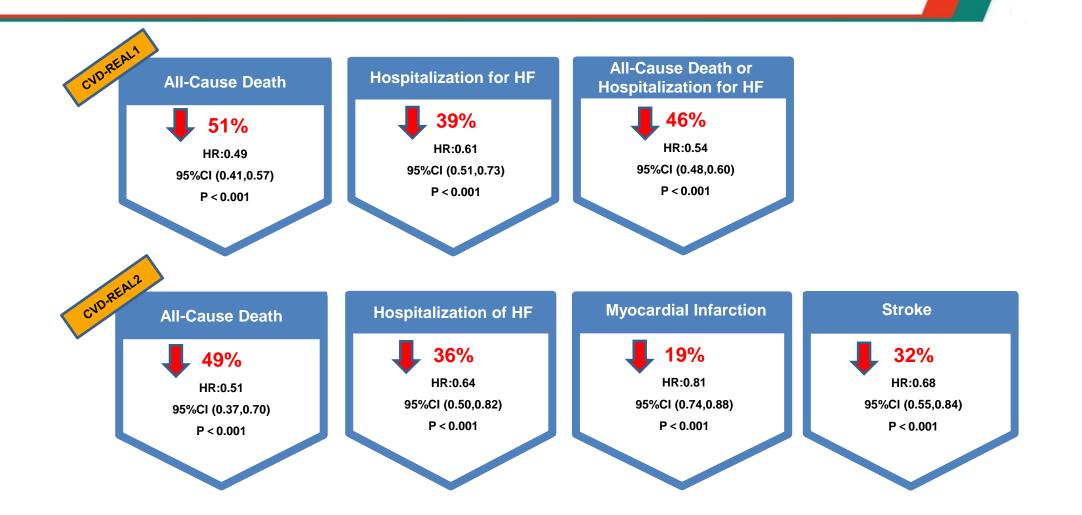
The CVD-REAL 2 Study (Asia Data)

Lower Risk of Cardiovascular Events and Death Associated with Initiation of SGLT-2 Inhibitors versus Other Glucose Lowering Drugs


> Real World Data from 6 Countries (S. Korea, Japan, Singapore, Australia, Canada, Israel)

> > CVDREAL²

> > 400,000 Patients


Subgroup Analyses – Outcomes With and Without CVD at Baseline

Event		Event rate	HR (95% CI)	P-value interaction
All-cause death	Prior CVD No Prior CVD	1.98 0.70	+æ-1 ⊨-æ1	0.198
Heart Failure	Prior CVD No Prior CVD	3.73 0.60	81 81	0.738
HHF or ACD	Prior CVD No Prior CVD	5.31 1.23		0.303
MI	Prior CVD No Prior CVD	1.15 0.30	1891 1891	0.595
Stroke	Prior CVD No Prior CVD	3.73 0.74		0.299
			vor SGLT2i ← 25 0.50 1.00	→ Favor oGLD 2.00

Summary of CVD-REAL 1 & CVD-REAL 2 results

DECLARE-TIMI58 TRIAL: THE LARGEST (N=17,160) OUTCOME TRIAL IN SGLT-2 INHIBITORS

Multiple risk factors $n = \sim 10,000$ (60%): Established CV disease n=~7,000 (40%): Age \geq 55 years (men), \geq 60 years (women) Age ≥40 years DECLARE **AND** \geq 1 additional risk factors: **AND** ≥1 additional diagnoses: Dyslipidemia Ischemic heart disease . Hypertension Cerebrovascular disease . Peripheral arterial disease Tobacco use • **Composite endpoint of** Hospitalization for heart failure or CV Placebo Co-Primary Endpoints T2D, ≥40 years plus: death Composite endpoint of Multiple (≥2) risk factors OR CV death, MI, stroke (MACE) **Established CVD** Dapagliflozin (10 mg per day) Add on to background CV and GLD per treating physician Event-driven duration, with planned median duration ~4.5 years

- Prior to the first interim analysis, the secondary endpoint of hHF was elevated to a composite primary endpoint of hHF and CV death
- Therefore DECLARE will provide a comprehensive assessment of the impact of dapagliflozin on common and important diabetesrelated CV events

Raz I, et al. Presented at the 77th Scientific Sessions of the American Diabetes Association, June 9-13, 2017, San Diego, CA

Outcomes

- Primary safety outcome
 - Non inferiority for 3-pt MACE (CV death, MI or ischaemic stroke)
- Co-primary efficacy outcomes
 - Composite of CV death or hospitalization for heart failure
 - 3-pt MACE
- Secondary outcomes
 - Renal composite (40% fall in eGFR, ESRD or renal or CV death)
 - All-cause mortality

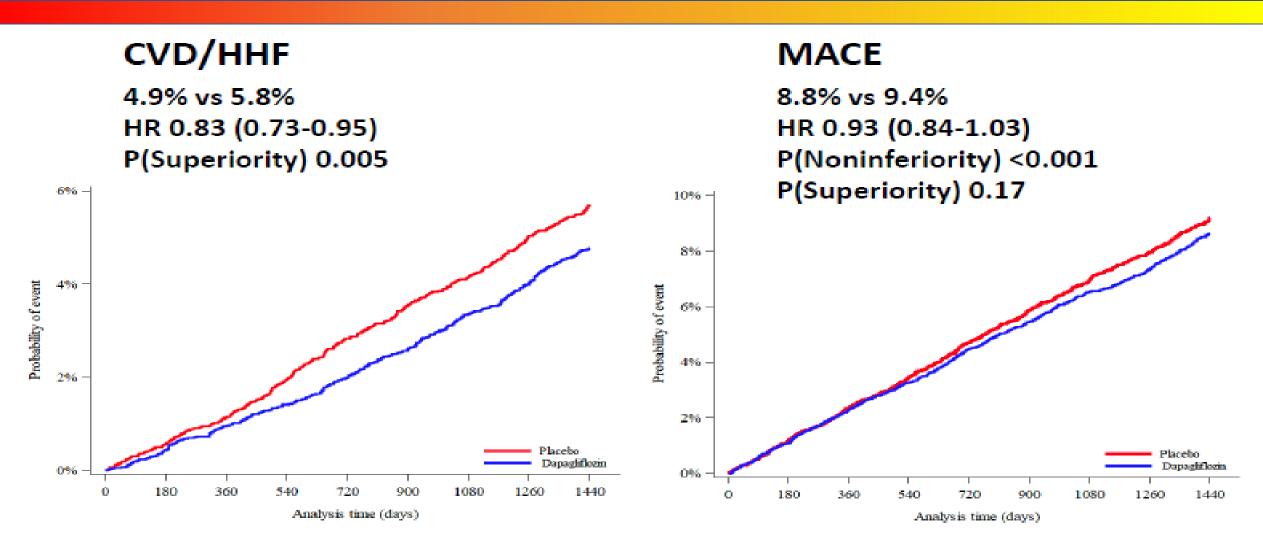
DECLARE Study Population

Baseline Characteristics

	Full Trial Cohort
	N = 17160
Age, yrs, Mean (SD)	64 (7)
Female Sex (%)	37
BMI, Mean (SD)	32 (6)
Duration of T2DM, yrs, Median (IQR)	11 (6, 16)
HbA1c (%), Mean (SD)	8.3 (1.2)
eGFR (CKD-EPI), Mean (SD)	85 (16)
Region (%): North America	32
Europe	44
Latin America	11
Asia Pacific	13
Established CV Disease (%)	41
History of Heart Failure (%)	10

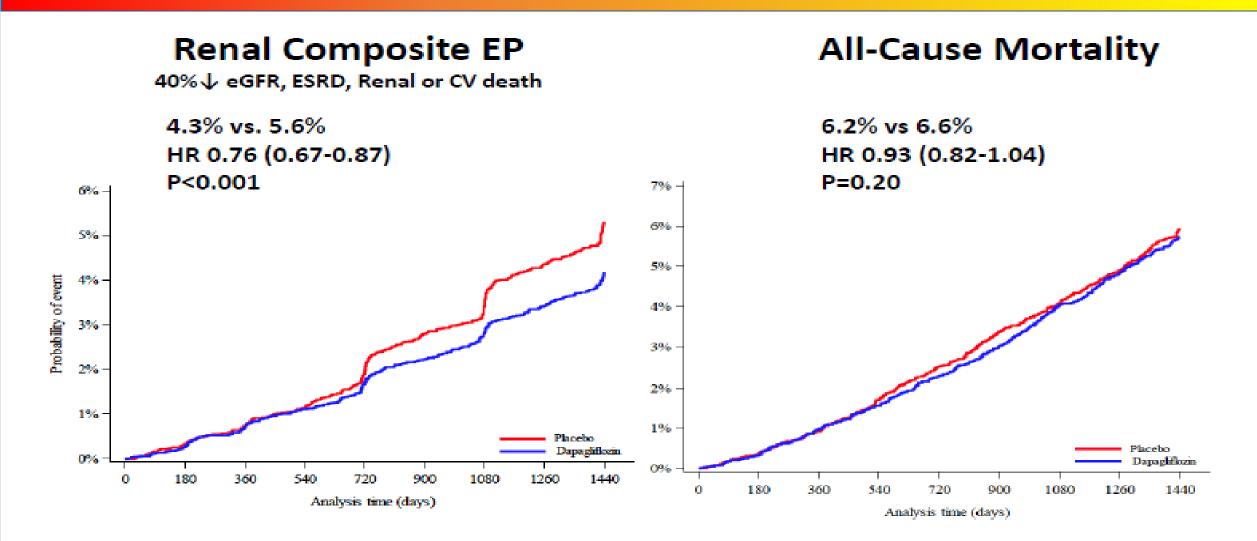
P=NS for all between treatment arm comparisons

Baseline Characteristics: Medication Use


	Full Trial Cohort N = 17160
	N = 17160
Glucose lowering therapies (%)	
Metformin	82
Insulin	41
Sulfonylurea	43
DPP4i	17
GLP-1 RA	4
Cardiovascular therapies (%)	
Antiplatelet	61
ACEI/ARB	81
Beta-blocker	53
Statin or Ezetimibe	75

P=NS for all between treatment arm comparisons

Primary Endpoints



Secondary Endpoints

Dapagliflozin Placebo

Cardinasecular Events

	rate/1000 patient-yr	rate/1000 patient-yr	Hazard Ratio (95% CI)		P value
CV death/HHF	12.2	14.7	0.83 (0.73-0.95)	┝━━→│	0.005*
MACE	22.6	24.2	0.93 (0.84-1.03)	H	<0.001* 0.17*
40% decrease in eGFR to <60 ml/min/m2, ESRD, or renal or CV death	10.8	14.1	0.76 (0.67-0.87)		
All-cause death	15.1	16.4	0.93 (0.82-1.04)	⊢ •-•	
HHF	6.2	8.5	0.73 (0.61-0.88)	⊢ •−-1	
Myocardial infarction	11.7	13.2	0.89 (0.77-1.01)	⊢ ••	
Ischemic Stroke	6.9	6.8	1.01 (0.84-1.21)	⊢ ••	
CV death	7.0	7.1	0.98 (0.82-1.17)		
Non-CV death	6.0	6.8	0.88 (0.73-1.06)	⊢ •-+	
40% decrease in eGFR to <60 ml/min/m2, ESRD, or renal death	3.7	7.0	0.53 (0.43-0.66)	→ →→	

Outcomes	Dapagliflozin Events per 1000 pt years	Placebo Events per 1000 pt years	Hazard Ratio (95% CI)		P value for interaction
CV death/HHF	12.2	14.7	0.83 (0.73-0.95)		0.99
ASCVD	19.9	23.9	0.83 (0.71-0.98)	⊢ ●−−1	
MRF	7.0	8.4	0.84 (0.67-1.04)		
MACE	22.6	24.2	0.93 (0.84-1.03)	-	0.25
ASCVD	36.8	41.0	0.90 (0.79-1.02)	⊢ ●_ I	
MRF	13.4	13.3	1.01 (0.86-1.20)		
				0.50 1.0 1	5

0.50 1.0 1.5 Favors Dapagliflozin $\leftarrow \rightarrow$ Favors Placebo

Effect on CVD/HHF in Key Subgroups

	CVD/HHF					
	Dapagliflozin n\N	Placebo n\N	Hazard Ratio (95% CI)	HR (95%-CI)	P Value fo Interaction	
Total Cohort	417/8582	496/8578		0.83 (0.73-0.95)		
Risk Group					0.99	
ASCVD	272/3474	325/3500	, ⊢_ •	0.83 (0.71-0.98)		
MRF	145/5108	171/5078	⊢	0.84 (0.67-1.04)		
History of HF					0.60	
Yes	142/852	172/872	⊢	0.79 (0.63-0.99)		
No	275/7730	324/7706	F	0.84 (0.72-0.99)		
eGFR					0.37	
>=90 mL/min/1.73m2	163/4137	163/4025	⊢ <u></u> −−+	0.96 (0.77-1.19)		
60 - <90 mL/min/1.73m2	199/3838	252/3894	⊢ • − I	0.79 (0.66-0.95)		
<60 mL/min/1.73m2	55/606	81/659	· • • • • • •	0.78 (0.55-1.09)		
			0.50 1.0 Favors Dapagliflozin ← → Favors Plac	1.5 cebo		

Key Safety Events

	Dapagliflozin (%)	Placebo (%)	Between Group Comparison
Treatment emergent SAE	34.1	36.2	P<0.001
Treatment emergent AE leading to drug D/C	8.1	6.9	P=0.01
Major Hypoglycemia	0.7	1.0	P=0.02
Diabetic Ketoacidosis* (DKA)	0.3	0.1	P=0.02
Amputation	1.4	1.3	NS
Fracture	5.3	5.1	NS
Acute Kidney Injury	1.5	2.0	P=0.002
Symptoms of volume depletion	2.5	2.4	NS
Genital infection (SAE, DAE)	0.9	0.1	P<0.001
Urinary tract infection (SAE, DAE)	1.5	1.6	NS
Fournier's Gangrene	0.01	0.08	NS
Cancer of Bladder*	0.3	0.5	P=0.02

In DECLARE – TIMI 58, the largest SGLT-2i trial, which included a broad representation of 1° and 2° prevention patients:

- Dapagliflozin reduced CVD/HHF and was safe with regard to MACE and appeared to reduce renal events
 - Reduction in CVD/HHF was consistent regardless of baseline ASCVD or HF
- Dapagliflozin was safe and generally well-tolerated
 - ↑ Genital infections & DKA
 - No difference in: amputation, fracture, or stroke
 - ↓ Hypoglycemia, AKI, bladder Ca

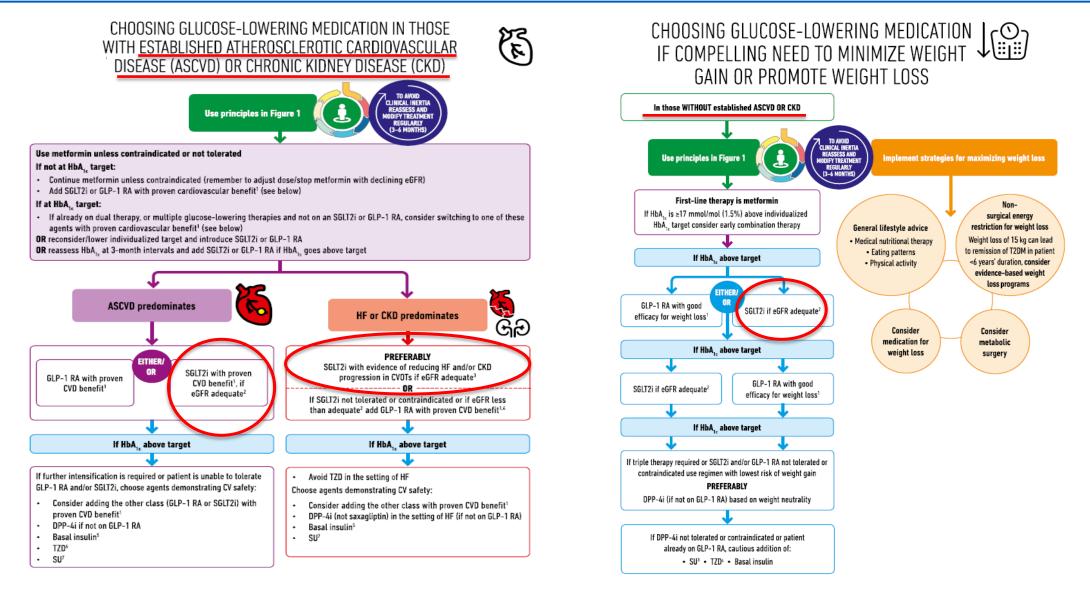
Now with the context of 3 large CVOTs:

- SGLT2i have moderate benefits on atherosclerotic MACE that appear confined to those with established ASCVD
- SGLT2i have robust effects on reducing the risk of heart failure and renal outcomes which do not appear dependent on baseline atherosclerotic risk, prior HF

These data with dapagliflozin from DECLARE - TIMI 58 extend the benefit of SGLT2i to a broader population of patients for primary and secondary prevention

Additional Information

THE LANCET


SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcomes trials

Thomas A Zelniker, Stephen D Wiviott, Itam ar Raz, Kyungah Im, Erica L Goodrich, Marc P Bonaca, Ofri Mosenzon, Eri T Kato, Avivit Cahn, Remo H M Furtado, Deepak L Bhatt, Lawrence A Leiter, Darren K McGuire, John P H Wilding, Marc S Sabatine

Differences and similarities between SGLT2 inhibitor CVOT

	DECLARE-TIMI 58	EMPA-REG	CANVAS
Intervention	Dapaglifloxin / PBO	Empagliflozin / PBO	Canagliflozin / PBO
Patient number	17,160	7,020	10,142
HbA1c	6.5 - <12.0%	7.0%-10.0%	7.0%-10.5%
Established CVD	Yes	Yes	Yes
Multiple risk factors without established CVD	Yes	No	Yes
Renal function	CrCl >60 ml/min	eGFR ≥30 ml/min/1.73m ²	eGFR ≥30 ml/min/1.73m ²
Primary endpoint(s)	Co-primary: • MACE • hHF or CV death	MACE	MACE
Target number of events	1,390	772	688
Estimated follow-up	~4.5 years	3.1 years	5.7 years

2018 American Diabetes Association (ADA) and European Association for the Study of Diabetes (EASD) Consensus Report

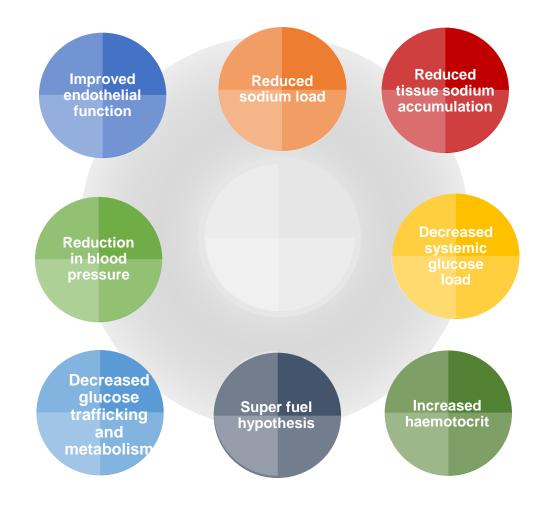
Heart failure: Preventable and Treatable CV complication of Diabetes

- Diabetes is an independent risk factor for heart failure (HF)
- HF is an early complication of T2D with significant morbidity and mortality
- When choosing an antidiabetic therapy, the impact on HF merits consideration
- Exploratory analyses of RCTs suggest that SGLT2 inhibitors reduce hHF in those with prior CVD
- DECLARE-TIMI 58 results and CVD REAL 1 & 2 suggest that this extends to those without prior CVD (mainly for dapagliflozin)

Summary

- The pattern of complications of diabetes is changing
 - Improvements in some classical complications; emergence of newer complications
- RCTs show CVD benefits for SGLT2i and GLP1 agonists
 - Findings predominantly in secondary prevention
- Real world evidence for SGLT2i suggests:
 - Benefits are seen outside clinical trials
 - Benefits extend to primary prevention
 - Benefits extend to Asian populations
- DECLARE extends SGLT2i RCT benefits to primary prevention

Recent evidence on individualizing cardio-protective therapy in DM


- For people with prior CVD
 - Strong evidence of benefit for SGLT2i
 - Evidence of modest benefit for liraglutide
 - Suggestive evidence of benefit of exenatide

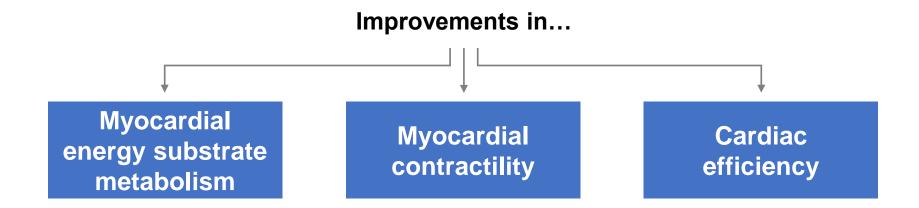
All people with T2DM & prior CVD should be considered for an SGLT2i or GLP1 agonist

- For people without prior CVD
 - DECLARE and CVD REAL indicate benefit of SGLT2i (mainly dapagliflozin)
 - SGLT2i becoming the preferred second line agent

Thank You

A number of possible mechanisms of CV benefit with SGTL2 inhibitors have been put forward

Evidence supporting potential mechanisms is sparse


There has been considerable discussion about three potential mechanisms

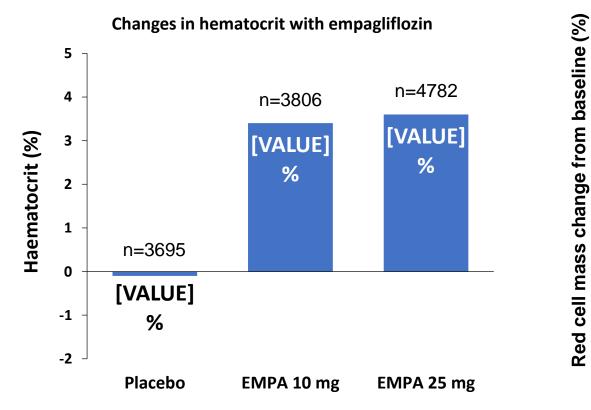
- Improvements in hemodynamics
- Super-fuel hypothesis
- Improved oxygen delivery

CV, cardiovascular; SGLT2, sodium-glucose cotransporter-2.

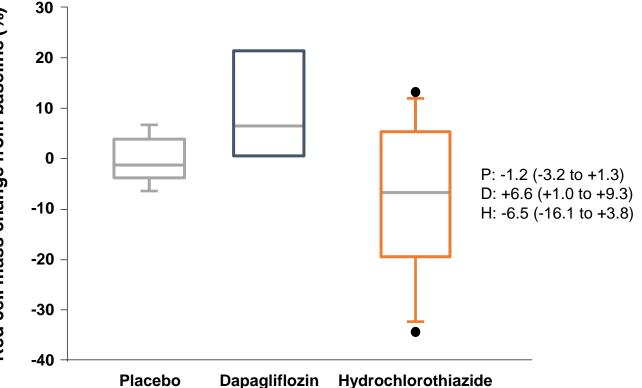
Mudaliar S, et al. Diabetes Care. 2016;39:1115–1122.

The super-fuel hypothesis suggests that SGLT2 inhibitors shift fuel metabolism to a more efficient source

...by shifting to a more energy-efficient fuel: ketone bodies instead of fatty acids/glucose


By shifting fuel utilisation away from lipids and glucose (which are less energy efficient) toward ketone bodies that produce ATP energy more efficiently than glucose or FFA, SGLT2 inhibitors improve myocardial fuel metabolism, myocardial contractility, and cardiac efficiency

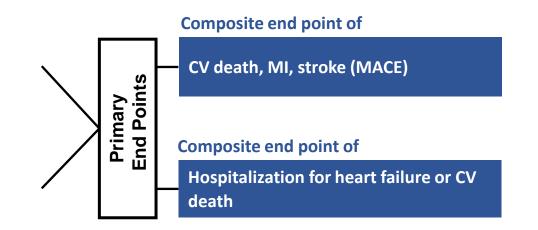
SGLT2, sodium-glucose cotransporter-2.


Mudaliar S, et al. Diabetes Care. 2016;39:1115–1122.

SGLT2 inhibitor-associated increased haematocrit and red blood cell mass may increase tissue oxygen delivery

Pooled data from 17 randomised trials in patients with T2DM¹

Increased red blood cell mass (~6%) was observed following treatment with dapagliflozin²

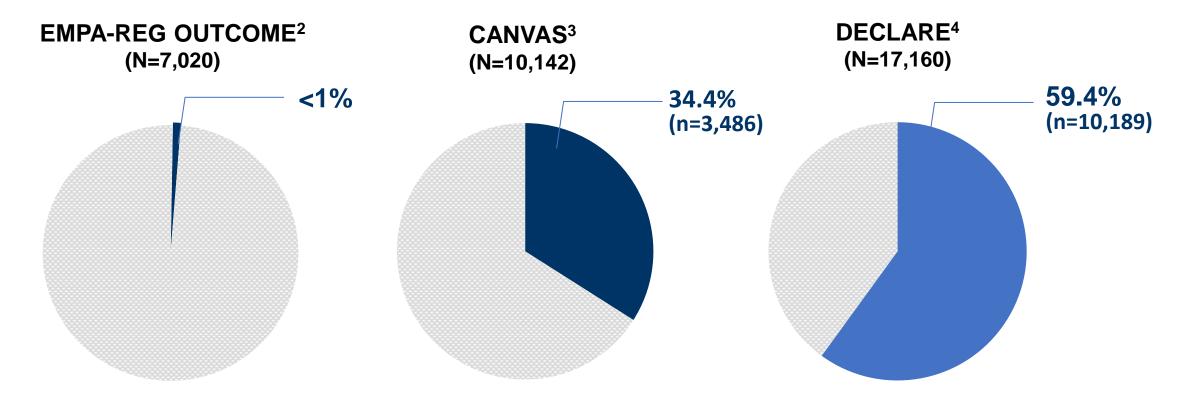


EMPA, empagliflozin; SGLT2, sodium-glucose cotransporter-2.

1. Kohler S. Clin Ther. 2016;38:1299–1313. 2. Lambers-Heerspink HJ, et al. Diabetes Obes Metab. 2013;15:853–862.

Heart failure hospitalization is well characterized in DECLARE TIMI-58

- Hospitalization for HF is prespecified in a primary endpoint as part of a composite with CV death
- Adjudication criteria for hHF are defined from study start
- Baseline LV-function data are collected where available and blood samples for biomarkers like NT-proBNP are collected

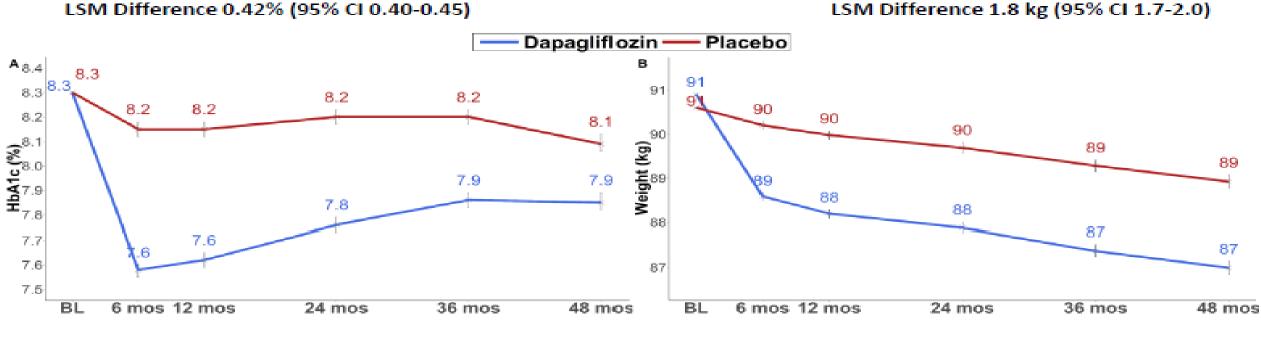

CANVAS vs EMPAR-REG OUTCOME - Effect on MI and stroke??

	Hazard ratio (95% CI)
CV death, nonfatal myocardial infarction, or nonfatal stroke	CANVAS Program
CV death	
Nonfatal myocardial infarction	
Nonfatal stroke	
Hospitalization for heart failure	
CV death or hospitalization for heart failure	
All-cause mortality	
Progression to macroalbuminuria*	►- ● 1 ►- □ 1
Renal composite*	
*CANVAS Program endpoints comparable with CMPA-REG OUTCOME.	0.5 1.0 2.0 Favors SGLT2i Favors Placebo

DECLARE has the largest number of T2D patients without prior CVD among the SGLT2i CV outcomes studies to date

In the T2D patient population, most patients do not have established CV disease¹

CV, cardiovascular; CVD, CV disease; SGLT2i, sodium glucose co-transporter 2 inhibitor; T2D, type 2 diabetes

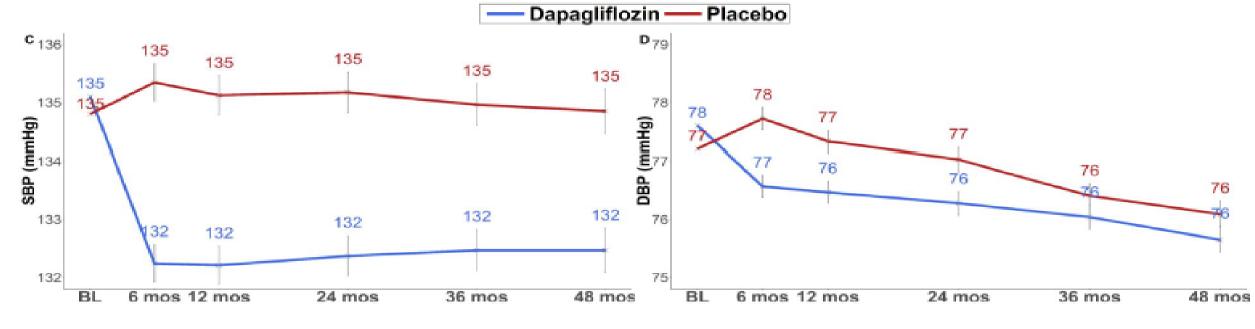

1. Einarson TR, et al. *Cardiovasc Diabetol* 2018;17:83; 2. Zinman B, et al. *N Engl J Med* 2015;373:2117–2128; 3. Neal B, et al. *N Engl J Med* 2017;377:644–657; 4. Raz I, et al. *Diabetes Obes Metab* 2018;20:1102–1110

HbA1c

Weight

All P-values (except BL) < 0.001

All P-values (except BL) < 0.001



SBP

DBP

LSM Difference 0.7mmHg (95% CI 0.6-0.9)

All P-values (except BL) <0.001

All P-values (except BL) < 0.001